Engineered aprotinin for improved stability of fibrin biomaterials.

نویسندگان

  • Kristen M Lorentz
  • Stephan Kontos
  • Peter Frey
  • Jeffrey A Hubbell
چکیده

Fibrin has been long used clinically for hemostasis and sealing, yet extension of use in other applications has been limited due to its relatively rapid resorption in vivo, even with addition of aprotinin or other protease inhibitors. We report an engineered aprotinin variant that can be immobilized within fibrin and thus provide extended longevity. When recombinantly fused to a transglutaminase substrate domain from α(2)-plasmin inhibitor (α(2)PI(1-8)), the resulting variant, aprotinin-α(2)PI(1-8), was covalently crosslinked into fibrin matrices during normal thrombin/factor XIIIa-mediated polymerization. Challenge with physiological plasmin concentrations revealed that aprotinin-α(2)PI(1-8)-containing matrices retained 78% of their mass after 3 wk, whereas matrices containing wild type (WT) aprotinin degraded completely within 1 wk. Plasmin challenge of commercial sealants Omrixil and Tisseel, supplemented with aprotinin-α(2)PI(1-8) or WT aprotinin, showed extended longevity as well. When seeded with human dermal fibroblasts, aprotinin-α(2)PI(1-8)-supplemented matrices supported cell growth for at least 33% longer than those containing WT aprotinin. Subcutaneously implanted matrices containing aprotinin-α(2)PI(1-8) were detectable in mice for more than twice as long as those containing WT aprotinin. We conclude that our engineered recombinant aprotinin variant can confer extended longevity to fibrin matrices more effectively than WT aprotinin in vitro and in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tranexamic acid--an alternative to aprotinin in fibrin-based cardiovascular tissue engineering.

Recent clinical trials have led to the worldwide suspension of aprotinin, the most commonly used antifibrinolytic agent in fibrin-based tissue engineering. For future clinical applications of fibrin-based scaffolds, a suitable, alternative fibrinolysis inhibitor must be identified. The present study aimed to evaluate tranexamic acid (trans-4-aminomethyl-cyclohexane-1-carboxylic acid [t-AMCA]) a...

متن کامل

Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells.

The objective of this research was to determine the appropriate cell culture conditions for embryonic stem (ES) cell proliferation and differentiation in fibrin scaffolds by examining cell seeding density, location, and the optimal concentrations of fibrinogen, thrombin, and aprotinin (protease inhibitor). Mouse ES cells were induced to become neural progenitors by adding retinoic acid for 4 da...

متن کامل

Injectable tissue-engineered cartilage using commercially available fibrin glue.

OBJECTIVES/HYPOTHESIS To achieve injectable tissue-engineered cartilage using a commercially available fibrin sealant, and to determine the most suitable fibrin glue concentration, cartilage source, and cultured chondrocyte concentration. STUDY DESIGN Animal research. METHODS A total of 28 immunocompetent New Zealand white rabbits were divided into four groups. The cultured chondrocytes fro...

متن کامل

Engineering of fibrin-based functional and implantable small-diameter blood vessels.

We engineered implantable small-diameter blood vessels based on ovine smooth muscle and endothelial cells embedded in fibrin gels. Cylindrical tissue constructs remodeled the fibrin matrix and exhibited considerable reactivity in response to receptor- and nonreceptor-mediated vasoconstrictors and dilators. Aprotinin, a protease inhibitor of fibrinolysis, was added at varying concentrations and ...

متن کامل

Fibrin Gels: A Potential Biomaterial for the Chondrogenesis of Bone Marrow Mesenchymal Stem Cells

of a thesis at the University of Miami. Thesis supervised by Professor Herman Cheung. No. of pages in text 62 The purpose of this study was to develop a fibrin gel system capable of serving as a three dimensional scaffold for the chondrogenesis of rabbit bone marrow mesenchymal stem cells (BM-MSCs) and to examine the effect of two fibrinolytic inhibitors, aprotinin and aminohexanoic acid, on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 32 2  شماره 

صفحات  -

تاریخ انتشار 2011